

 www.cyangate.com

S-Drive

Developer Guide

v2.3

Important Note

This user guide contains detailed information about S-Drive customization with special APIs and intended for developer use. Refer to the S-

Drive Admin Guide and S-Drive User Guide for more information about installation/configuration and usage of S-Drive product.

Developer Guide

2 All Rights Reserved - CyanGate LLC

Contents

I. SDriveTools API ... 4

 getAttachmentURL() .. 4

 getAttachmentURLs() ... 7

 id15to18() .. 7

 getAccessKey() ... 8

 getBucketName() ... 8

 getS3Endpoint() ... 8

 deleteFiles() ... 8

 initializeUpload() .. 9

 completeUpload() .. 11

 cancelUpload() ... 11

 getAmazonHeaders() ... 12

 initializeMultiPartUpload() .. 12

 copyPartMultiPartUpload() .. 13

 completeMultiPartUpload() ... 14

 deleteMultiParts() .. 14

 abortMultiPartUpload() ... 14

 inheritSharings() ... 15

 Uploading Files to S-Drive (Amazon S3) ... 16

1. Exceptions and Reasons for Upload Operations ... 18

2. Error Messagesof ResultObject and Reasons .. 19

 getPreviewURL() .. 21

 getPreviewURLs() ... 21

 getThumbnailURL() .. 22

 getThumbnailURLs() ... 23

II. S-Drive REST API .. 24

 Introduction ... 24

 Service Endpoint .. 24

 Authentication ... 24

 Files Resource .. 25

Developer Guide

3 All Rights Reserved - CyanGate LLC

 File Objects Resource ... 27

III. Automatic Folder Creation ... 29

IV. S-DRIVE SUPPORT .. 30

Developer Guide

4 All Rights Reserved - CyanGate LLC

I. SDriveTools API

You can use SDriveTools API calls for programmatically interacting with S-Drive Attachments.

 getAttachmentURL()

This method is used to get the URL of an S-Drive Attachment.

String getAttachmentURL(String parentId, String fileObjectId,

 Long timeValue)

Parameters:

 parentId: Id of the parent object. You can use 15-character id or 18-character id.

 fileObjectId: Id of the attachment (file) object. This can be retrieved using an SOQL query. An

 example can be found in following sections.

 timeValue: Expiration time of the link in seconds.

 Return Value: The method will return the URL of the S-Drive attachment.

 Our example is about retrieving an image file from S-Drive Account Attachments and displaying

 it inside Account Page Layout. You can customize SOQL call and other options similar to the

 example.

1. First override Accounts View button with Account Files Page to upload a JPG image file to S-

Drive Account Attachments. (Figure 1)

Figure 1

2. Upload a jpg image file into one of your accounts using Upload File(s) button. (Figure 2)

Figure 2

3. Create an apex class named ExamplePageController. In below code 1*60 is equivalent to

one minute. You can set expiring time like this. Also, you can configure your SOQL query

based on your needs. (Figure 3)

Developer Guide

5 All Rights Reserved - CyanGate LLC

Figure 3

public with sharing class ExamplePageController

{

 private Account acct;

 private String fileURL = '';

 public ExamplePageController(ApexPages.StandardController

controller)

 {

 this.acct = (Account)controller.getRecord();

 List<cg__AccountFile__c> accountFiles = [Select id from

cg__AccountFile__c where cg__AccountFile__c.cg__WIP__c = false and

cg__AccountFile__c.cg__Content_Type__c = 'image/jpg' and

cg__AccountFile__c.cg__Account__c = :acct.id];

 if(accountFiles.size() > 0)

 {

 fileURL = cg.SDriveTools.getAttachmentURL(acct.id,

accountFiles[0].id, (1 * 60));

 }

 else

 {

 fileURL = 'http://www.cyangate.com/noimage.jpg';

 }

 }

 public String getFileURL()

 {

 return fileURL;

 }

}

4. Create an ExamplePage apex page with below content. (Figure 4)

http://www.cyangate.com/noimage.jpg

Developer Guide

6 All Rights Reserved - CyanGate LLC

Figure 4

<apex:page standardController="Account"

extensions="ExamplePageController">

 <apex:image url="{!fileURL}" />

</apex:page>

5. Customize your account page layout and include ExamplePage inside the layout. (Figure 5)

Figure 5

6. Now if you reload your account (which contains an image file) you'll see a screen like below.

You can customize the apex class and page based on your needs. (Figure 6)

Figure 6

 Notes

 1. If you would like to get an old version of a file, you should add id of an old version file into

fileoObjectIds list.

Developer Guide

7 All Rights Reserved - CyanGate LLC

 getAttachmentURLs()

This method is used to get multiple URLs for multiple objects of an S-Drive Attachment at a time.

List<String> getAttachmentURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue)

List<String> getAttachmentURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue, Map<String,String> requestParameters)

List<String> getAttachmentURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue, List<Map<String,String>>

 requestParametersList)

 Parameters:

 parentIds: List of Salesforce ids of the parent objects. You can use 15-character id or 18-

 character id.

 fileObjectIds: List of Salesforce ids of the attachment (files) objects.

 timeValue: Expiration time of the links in seconds.

requestParameters: Map of request parameters and theirs values to set the parameters

in the response (e.g. ('response-content-disposition’, ‘inline; filename=myfile.png')). For

more information, visit the Amazon documentation:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

requestParametersList: List of request parameters map for each files.

 Return Value: The method will return the list of URLs of the S-Drive attachment.

 Notes

 1. If you would like to get an old version of a file, you should add id of an old version file into

fileoObjectIds list.

 id15to18()

This method is used to convert Salesforce Ids from 15 characters to 18 characters.

String id15to18(String inID)

 Parameters:

 inID: 15-character Salesforce id.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Developer Guide

8 All Rights Reserved - CyanGate LLC

Return Value: The method will return the 18-character Salesforce id.

 getAccessKey()

This method is used to get the AccessKey for setting the AWSAccessKeyId parameter during uploads.

String getAccessKey()

 getBucketName()

This method is used to get the Bucket Name for setting the S3 bucket parameter during uploads.

String getBucketName()

 getS3Endpoint()

This method is used to get the S3 Endpoint location of your S3 bucket for setting the S3 endpoint

parameter during uploads.

String getS3Endpoint()

 deleteFiles()

This method is used to delete files stored as attachments or under S-Drive folders.

List<ResultObject> deleteFiles(List<ID> wipIds, String objectId)

Parameters:

 wipIds: List of Salesforce.com IDs of "file" records (either attachments or S-Drive Folder files).

objectId: Id of the parent object. You can use 15-character or 18-character Salesforce.com ID.

Return Value: The method will return a list of ResultObject (Figure 8) which holds delete status

information for each file record.

Example code:

List<Id>wipIds = new List<Id>();

wipIds.add(ID.valueOf(uploadRequestInfos .fileWipId));

List<cg.ResultObject>resultObject=cg.SDriveTools.deleteFiles(

 wipIds, objectId);

Developer Guide

9 All Rights Reserved - CyanGate LLC

Notes

 1. If you enable versioning and add a latest version file id into wipIds list, all versions of that file

will also be deleted. You can also delete a single old version file by adding its id into wipId list.

 initializeUpload()

This method is used to initialize attachment uploads.

List<UploadRequestInfo> initializeUpload

(String objectId, List<SObject> attachments, Map<String,String> policyMap)

Parameters:

objectId: Id of the parent object. You can use 15-character or 18-character Salesforce.com id.

For example, this ID is the ID of the case record if the attachments are being uploaded for a

case.

attachments:List of Salesforce SObject for uploading. The SObject will be representing the "File"

object. For example, for a Case attachment, the SObject will be representing the

cg__CaseFile__c record.

policyMap: Map of policy conditions and theirs values that represent the additional policy

parameters used during upload (e.g. ('$Content-Disposition’, ‘attachment; filename)). For more

information, visit the Amazon documentation:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

Return Value: The method will return the list of UploadRequestInfo (Figure 7), which holds

information about the files that are about to be uploaded.

The following steps are executed within this method:

a. Validate the input with the following rules:

If the uploaded attachments are of type S3Object (i.e. files in S-Drive tab), the Parent__c

field should be the same for all files.

b. If the uploaded attachments are of type S3Object (i.e. files in S-Drive tab), there should

not be an existing file with the same name in the same folder.

c. File name and file size can’t be blank

d. File name can’t include the following characters: \ / : * ? \" <> | ~

e. File size can’t be zero.

f. File size can’t be more than the Max file size defined in S-Drive Configuration.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

Developer Guide

10 All Rights Reserved - CyanGate LLC

1. Create the file record in Salesforce with work in progress state (WIP__c = true) (i.e. create

S3Object, Case File, Custom Object File, etc).

2. Calculate policy, signature, file name etc. in order to be used as the POST parameters. While

calculating the policy, policyMap parameter is used to generate different parameters in the

policy. For html upload please reference Figure 9 and Returns a list of UploadRequestInfo

(Figure 7) objects.

Example code:

List<SObject>attachments = new List<SObject>();

My_Example_Object_File__c attachment = new My_Example_Object_File__c

();

attachment.File_Name__c = 'Example.txt';

attachment.File_Size_in_Bytes__c ='100';

attachment.Parent__c = 'a0I80…';

String objectId = String.valueOf(attachment.Parent__c);

attachments.add(attachment);

Map<String, String> policyMap= new Map<String,String>();

policyMap.put('$Content-Disposition','attachment; filename');

List<cg.UploadRequestInfo> uploadRequestInfos=

cg.SDriveTools.initializeUpload(objectId ,attachments, policyMap);

Notes

1. It is required to set SObject’s File_Name__c, File_Size_in_Bytes__c and Parent__c

fields. You can optionally set other custom fields.

2. For S-Drive Attachments files, Parent__c refers to its parent object id. In order to set

the parent folder id, use Parent_Folder_Id__c field. For S-Drive Folders files,

Parent__c refers to its parent folder id and if you want to upload the file to home

folder set this to null. Also for S-Drive Folders files, objectId must to be set to null.

3. If you put expiration, acl, bucket, key and x-amz-server-side-encryption conditions in

the policyMap, these parameters will be ignored. Because, these are being set in the

initializeUpload () method. You do not need to put these parameters in the

policyMap. But, you must use these parameters while uploading. For this, please

reference Figure 10.

Developer Guide

11 All Rights Reserved - CyanGate LLC

 completeUpload()

This method is used to complete attachments upload once the files have been uploaded to Amazon

S3.

List<ResultObject> completeUpload(List<ID> wipIds)

Parameters:

wipIds: List of Salesforce ids for attachment "file" records. These IDs have been returned from

the initializeUpload() method for each file record.

Return Value: The method will return the list of Result Object (Figure 127), which holds

filecompletion status information.

Notes

1. If you want to confirm that file(s) are successfully uploaded to Amazon, you can use the

getAmazonHeader() method to get headers which is returned by Amazon S3 for a given file.

You can also compare the ETag header, the MD5 checksum calculated by Amazon when the

file is uploaded to S3, with the MD5 that you calculate for the file(s).

2. If you set the success_action_status to 201 status code during the upload process, you can

also use XML document which is returned by Amazon S3 to compare ETag header with MD5

check sum.

Example code:

List<Id>wipIds = new List<Id>();

wipIds.add(ID.valueOf(uploadRequestInfos .fileWipId));

 List<cg.ResultObject>resultObjects = cg.SDriveTools.completeUpload(wipIds);

 cancelUpload()

This method is used to cancel attachment upload operation.

List<ResultObject> cancelUpload(List<ID> wipIds, String objectId)

Parameters:

 wipIds: List of Salesforce.com IDs of attachment "file" records.

objectId: Id of the parent object. You can use 15-character or 18-character Salesforce.com ID.

Developer Guide

12 All Rights Reserved - CyanGate LLC

Return Value: The method will return a list of ResultObject (Figure 127) which holds cancel

status information for each file record.

Example code:

List<Id>wipIds = new List<Id>();

wipIds.add(ID.valueOf(uploadRequestInfos .fileWipId));

List<cg.ResultObject>resultObjects =

cg.SDriveTools.cancelUpload(wipIds, objectId);

 getAmazonHeaders()

This method is intended to be used to get response headers and its values from Amazon after an

upload in order to verify the successful upload of the files.

Map<String,String> getAmazonHeaders(String item)

Parameters:

 item: File location/key of uploaded file.

Return Value: The method will return the map of response headers and its values (e.g. ETag)

Example code:

Map<String,String> headResponse =

cg.SDriveTools.getAmazonHeaders(uploadRequestInfos .fileLocation);

 initializeMultiPartUpload()

This method is used to initialize multipart upload to get uploadId. This uploadId will be used on copy

part, complete, abort multi part operations.

String initializeMultiPartUpload(String awsLocation)

Parameters:

awsLocation: The name of key to be uploaded as file location. You can get this value from the

fileLocation of UploadRequestInfo object.

Return Value: The method will return the uploadId as a String.

Developer Guide

13 All Rights Reserved - CyanGate LLC

Example code:

String uploadId =

cg.SDriveTools.initializeMultiPartUpload(uploadRequestInfos.fileLocatio

n);

 copyPartMultiPartUpload()

This method is used to upload a part by copying data from existing object as data source to get Etag

value. This Etag will be used complete multi part request.

String copyPartMultiPartUpload(String awsLocation, String uploadId, Long

partNumber)

Parameters:

awsLocation: The name of key to be uploaded as file location. You can get this value from the

fileLocation of UploadRequestInfo object.

uploadId: The upload Id that you get this Id from the initializeMultipartUpload request as a

return value.

partNumber: The order of uploaded part.

Return Value: The method will return the Etag as a String.

Example code:

List<String> eTagList = new List <String>();

for(Integer i = 1; i<= multiPartsSize; i++)

{

String eTag = cg.SDriveTools.copyPartMultiPartUpload

(uploadRequestInfos .fileLocation, uploadId, i);

 eTagList.add(eTag);

}

Notes

1. While uploading multi parts, you must give the key parameters with below format. It must

be start with zero.

"key" : fileLocation + '.' +0 (partNumber = 1)

 to

"key" : fileLocation + '.' + multiPartsSize-1 (partNumber = multiPartsSize)

Developer Guide

14 All Rights Reserved - CyanGate LLC

 completeMultiPartUpload()

This method is used to complete a multipart.

String completeMultiPartUpload(String awsLocation, String uploadId, List<String>

eTagList)

Parameters:

awsLocation: The name of key to be uploaded as file location. You can get this value from the

fileLocation of UploadRequestInfo object.

uploadId: The upload Id that you get this Id from the initializeMultipartUpload request as a

return value.

eTagList: List of Etags. You can get Etags by copyPartMultiPart requests.

Return Value: The method will return the ETag as a String.

Example code:

String ETag = cg.SDriveTools.completeMultiPartUpload(uploadRequestInfos

.fileLocation, uploadId, eTagList);

 deleteMultiParts()

This method is used to delete multi parts.

void deleteMultiParts(String awsMultiPartsLocationList)

Parameters:

awsMultiPartsLocationList: List of parts keys as the names of file locatons. It must contain up to

1000 keys because of limit.

Example code:

List<String> awsMultiPartsLocationList = new List <String>();

for(Integer i = 0; i<= multiPartsSize-1; i++)

{

 awsMultiPartsLocationList.add(fileLocation + '.' +i);

}

cg.SDriveTools.deleteMultiParts(awsMultiPartsLocationList);

 abortMultiPartUpload()

Developer Guide

15 All Rights Reserved - CyanGate LLC

This method is used to abort a multipart upload.

void abortMultiPartUpload(String awsLocation, String uploadId)

Parameters:

awsLocation: The name of key to be uploaded as file location. You can get this value from the

fileLocation of UploadRequestInfo object.

uploadId: The upload Id that you get this Id from the initializeMultipartUpload request as a

return value.

Example code:

cg.SDriveTools.abortMultiPartUpload(uploadRequestInfos

.fileLocation, uploadId);

 inheritSharings()

This method is used to inherit the sharings from parent folder to the file.

void inheritSharings(List<String> wipIdList, String currentFolderId)

Parameters:

wipIdList: List of Salesforce.com IDs of "file" records(either attachments or S-Drive Folder files)

as a String.

currentFolderId: Id of the parent folder of the file for sharing.

Example code:

List<String> wipIdList = new List <String>();

wipIdList .add(uploadRequestInfos .fileWipId);

cg.SDriveTools.inheritSharings(wipIdList, currentFolderId);

UploadRequestInfo

String fileName{get; set;}

String fileLocation{get; set;}

Developer Guide

16 All Rights Reserved - CyanGate LLC

String fileSize{get; set;}

String fileType{get; set;}

String wipFileId{get; set;}

String signature{get; set;}

 String policy{get; set;}

Figure 7

ResultObject

String status {get;set;}// success – fail

String errorMessage {get;set;} // null if status is success

String wipFileId {get;set;} // to see which file failed

Figure 8

 Uploading Files to S-Drive (Amazon S3)

You can use SDriveTools API calls for uploading the S-Drive Attachments/Folders Files to Amazon.

For this, you will need to use below methods:

▪ initializeUpload()

▪ completeUpload()

▪ cancelUpload()

▪ getAccessKey()

▪ getBucketName()

▪ getS3Endpoint()

Before upload, you must first initialize attachment upload. Initializing the attachment upload creates

work in progress (WIP) file(s) objects (S3Object, Case File, My Example Object File, etc.) and

calculates the required file information for the upload process. For initializing attachment upload,

use initializeUpload() method.

Developer Guide

17 All Rights Reserved - CyanGate LLC

The next step is uploading the file(s) to Amazon using html upload. When you upload file(s) to

Amazon, You should use the information which has been returned by initializeUpload() as well as

the values retrieved from getAccessKey(), getBucketName() and getS3Endpoint() methods.

If upload is successful, you must complete attachment upload. Complete attachment upload means

updating WIP file records created during initialize upload call and set the WIP__c field value as false.

For completing attachment upload, use completeUpload() method.

If upload fails, you must cancel upload. Canceling upload means deleting the WIP file records. For

canceling attachment upload, use cancelUpload() method.

You can also upload the big files using multipart uploads. For this, you will need below methods.

▪ initializeMultiPartUpload()

▪ copyPartMultiPartUpload()

▪ completeMultiPartUpload()

▪ deleteMultiParts()

▪ abortMultiPartUpload()

Html Policy

{

"expiration": "2014-03-12T12:47:13.893Z",

"conditions":

[

{"acl": "private" },

{"bucket": "cg--81..." },

["starts-with", "$Content-Disposition", "attachment; filename"],

["starts-with", "$key", "a038…"],

{"x-amz-server-side-encryption": "AES256"},

]

}

Figure 9

Developer Guide

18 All Rights Reserved - CyanGate LLC

1. Exceptions and Reasons for Upload Operations

1. [SDriveException]"Parent Folder IDs must be the same for all file records that are being

uploaded".

[Reason] If Parent__c values which are passed in with the SObjects are not same for all

S3Object.

[Solution] Give the parent folder ids the same for all S3Objects.

2. [SDriveException]"A file with the same name exists in the target folder (fileName) ".

[Reason] This exception occurs if a file with the same name exists in the same folder for

S3Objects.The same file name condition holds when the file is not a WIP (WIP__c =false) file or

the file is a WIP file (WIP__c =true) with the same file

namebutithasbeenuploadedbyanotheruserlessthan12 hours ago.

[Solution]Upload files with different file names or delete the previously existing files before the

upload.

3. [SDriveException]"Error occurred while checking the files to upload! File Name, File Size

cannot be blank (fileName)".

[Reason]If the file name or file size fields that have been passed in with the SObject are null or

empty.

[Solution]File name and file size is required for upload. Thus, pass non-blank values in with the

SObject.

4. [SDriveException]"Name cannot start with a space or a dot and cannot contain any of the

following characters: \\ /: *? \" < > | ~ (fileName)".

[Reason]If the file name is invalid. Invalid name means, file

name starts with a spaceor a dot and contains any of the following characters: \ / : * ? \" < > | ~

[Solution]Do not upload a file with the name starting with space or a dot and contain any of the

following characters: \ / : * ? \" < > | ~

5. [SDriveException]"You cannot upload a zero-length file (fileName)".

[Reason] If the file size is 0.

[Solution] Upload files that are greater in size than zero.

6. [SDriveException]"Files greater than (maxFileSize) cannot be uploaded. Please contact your

system administrator for the file size limits! (fileName)".

[Reason]File being uploaded has a size greater than the maximum file size

limit (MAX_FILE_SIZE configuration in S-Drive Configuration page).

[Solution]Do not upload files whose size greater than MAX_FILE_SIZE. Or Increase the

MAX_FILE_SIZE configuration in S-Drive Configuration page.

Developer Guide

19 All Rights Reserved - CyanGate LLC

7. [SDriveException]"Invalid parent id specified. Check your function parameters!".

[Reason] If object (parent) id, which is passed as a parameter, is not a Salesforce.com 15 or 18

characters long ID.

[Solution]Pass 15-character or 18-characterSalesforce.com ID as objectId parameter.

2. Error Messagesof ResultObject and Reasons

1. [errorMessage]"Wip Id is null! ".

[Reason] If wipId in the wipIds list parameter is null.

[Solution] Do not pass null Salesforce.com IDs of file objects.

2. [errorMessage]"'No such wip file with provided id: (wipId) ".

[Reason]If wipId in wipIds list is not available.

[Solution]Pass correct and available Salesforce.com ids of files objects.

3. [errorMessage]"There is no wip files".

[Reason]If all of wipId in wipIds list is null or wipIds’ size is 0.

[Solution]Pass wipIds with length greater than0 and non-null string values.

4. [errorMessage]" Insufficient Privileges. You do not have not access to update operation".

[Reason]If Object-level security for update access is not allowed.

[Solution] Make sure that update access is allowed for your profile.

Html upload example:

<form>

File : <input type="file" name="file" id="file" />

<input type="button" value="Upload" onclick="htmlUpload();"/>

</form>

<script type="text/javascript">

var uploadFile ;

document.getElementById('file').addEventListener('change',

handleFileSelect,false);

function handleFileSelect(evt)

{

 var fileName = evt.currentTarget.files[0].name ;

 var fileSize = evt.currentTarget.files[0].size;

 uploadFile = evt.currentTarget.files[0];

 //Call initializeUpload() method

}

Developer Guide

20 All Rights Reserved - CyanGate LLC

function htmlUpload()

{

 var fd = new FormData();

 fd.append('key', '{!uploadRequestInfos.fileLocation}');

 fd.append('AWSAccessKeyId', '{!accessKey}');

 fd.append('acl', 'private');

 fd.append('policy', '{!uploadRequestInfos.policy}');

 fd.append('signature', '{!uploadRequestInfos.signature}');

 fd.append('x-amz-server-side-encryption', 'AES256');

 fd.append('Content-Disposition', 'attachment; filename=\"'+

'{!uploadRequestInfos.fileName}' +'\"');

 fd.append("file",uploadFile);

 var xhr = new XMLHttpRequest();

 xhr.addEventListener("load", htmlUploadComplete, false);

 xhr.addEventListener("error", htmlUploadFailed, false);

 xhr.open('POST', 'https://s3.amazonaws.com/'+'{!bucketName}',

true);

 xhr.send(fd);

}

function htmlUploadComplete(evt)

{

 //Call completeUpload() method

}

function htmlUploadFailed(evt)

{

 //Call cancelUpload() method

}

</script>

You can see the appropriate values for the request parameters below (Figure 10).

Form Field Value

acl

AWSAccessKeyId

bucket

Content-Disposition

Content-Type

'private'

SDriveTools.getAccessKey()

SDriveTools.getBucketName()

'attachment; filename=\"'+ uploadRequestInfos.fileName+'\"'

uploadRequestInfos.fileType

Developer Guide

21 All Rights Reserved - CyanGate LLC

key

policy

signature

x-amz-server-side-encryption

success_action_status

uploadRequestInfos.fileLocation

uploadRequestInfos.policy

uploadRequestInfos.signature

'AES256'

201

Figure 10

 getPreviewURL()

This method is used to get the URL of an S-Drive Attachment’s Preview File.

String getPreviewURL(String parentId, String fileObjectId,

 Long timeValue)

Parameters:

 parentId: Id of the parent object. You can use 15-character id or 18-character id.

 fileObjectId: Id of the attachment (file) object. This can be retrieved using an SOQL query.

 timeValue: Expiration time of the link in seconds.

 Return Value: The method will return the URL of the S-Drive attachment’ preview.

 Notes

 1. If you would like to get preview URL of an old version of a file, you should add id of an old

version file into fileoObjectIds list.

 getPreviewURLs()

This method is used to get multiple preview URLs for multiple objects of an S-Drive

Attachment’s at a time.

List<String> getPreviewURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue)

List<String> getPreviewURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue, Map<String,String> requestParameters)

Developer Guide

22 All Rights Reserved - CyanGate LLC

List<String> getPreviewURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue, List<Map<String,String>>

 requestParametersList)

 Parameters:

 parentIds: List of Salesforce ids of the parent objects. You can use 15-character id or 18-

 character id.

 fileObjectIds: List of Salesforce ids of the attachment (files) objects.

 timeValue: Expiration time of the links in seconds.

requestParameters: Map of request parameters and theirs values to set the parameters

in the response (e.g. ('response-content-disposition’, ‘inline; filename=myfile.png')). For

more information, visit the Amazon documentation:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

requestParametersList: List of request parameters map for each files.

 Return Value: The method will return the list of preview URLs of the S-Drive

attachment.

 Notes

 1. If you would like to get preview URL of an old version of a file, you should add id of an old

version file into fileoObjectIds list.

 getThumbnailURL()

This method is used to get the URL of an S-Drive Attachment’s Thumbnail File.

String getThubmnailURL(String parentId, String fileObjectId,

 Long timeValue)

Parameters:

 parentId: Id of the parent object. You can use 15-character id or 18-character id.

 fileObjectId: Id of the attachment (file) object. This can be retrieved using an SOQL query.

 timeValue: Expiration time of the link in seconds.

 Return Value: The method will return the URL of the S-Drive attachment’s thumbnail.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Developer Guide

23 All Rights Reserved - CyanGate LLC

 Notes

 1. If you would like to get thumbnail URL of an old version of a file, you should add id of an old

version file into fileoObjectIds list.

 getThumbnailURLs()

This method is used to get multiple thumbnail URLs for multiple objects of an S-Drive

Attachment at a time.

List<String> getThumbnailURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue)

List<String> getThumbnailURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue, Map<String,String> requestParameters)

List<String> getThumbnailURLs(List<ID> parentIds, List<ID>

 fileObjectIds, Long timeValue, List<Map<String,String>>

 requestParametersList)

 Parameters:

 parentIds: List of Salesforce ids of the parent objects. You can use 15-character id or 18-

 character id.

 fileObjectIds: List of Salesforce ids of the attachment (files) objects.

 timeValue: Expiration time of the links in seconds.

requestParameters: Map of request parameters and theirs values to set the parameters

in the response (e.g. ('response-content-disposition’, ‘inline; filename=myfile.png')). For

more information, visit the Amazon documentation:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

requestParametersList: List of request parameters map for each file.

 Return Value: The method will return the list of thumbnail URLs of the S-Drive

attachment.

 Notes

 1. If you would like to get thumbnail URL of an old version of a file, you should add id of an old

version file into fileoObjectIds list.

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Developer Guide

24 All Rights Reserved - CyanGate LLC

II. S-Drive REST API

 Introduction

The S-Drive REST services is an interface deployed within the S-Drive package available on the Salesforce
App Exchange. It leverages Salesforce’s servers and REST architecture. To have as many cases covered in
interfacing with S-Drive we highly suggest developers to use the Force.com REST API developed by
Salesforce found here.

 Service Endpoint

HTTP web service methods deployed on a Salesforce org follows a pattern. It starts with the instance
URL followed by the resource location. The format goes as

https://{instance}. salesforce.com/services/apexrest/cg/SDrive/{resourcelocation}

The instance is a variable unique for each org, it is the characters between “https://” and
“salesforce.com” in your org URL. The resource location variable for S-Drive files is “files”.

 Authentication

Authentication for REST services deployed on Salesforce are done with OAuth 2.0 You may find
Salesforce’s documentation on using OAuth 2.0 for Salesforce authentication here.

To establish an authenticated connection to an outside app you would have to first create a “connected
app” on Salesforce and get the Client Id and the Client Secret token. To find Salesforce’s detailed
documentation on connected apps you may go here.

Authentication is always included in the header.

http://resources.docs.salesforce.com/rel1/doc/en-us/static/pdf/SF_Rest_API_cheatsheet_web.pdf
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/quickstart_oauth.htm
https://help.salesforce.com/articleView?id=connected_app_overview.htm&type=5

Developer Guide

25 All Rights Reserved - CyanGate LLC

 Files Resource

Endpoint

https://{instance}. salesforce.com/services/apexrest/cg/SDrive/files

Methods

• GET
• POST
• PUT
• DELETE

Method Details

• GET
Request Body Parameters

fileObjectIds : ids of the files you want to query

Type: string[]

parentIds : ids of the parent objects of the requested files. Array length must match the
length of fileObjectIds. If file object type is an S3 object members of this array can be
null or invalid input but array lengths must still match.

Type: string[]

timeValue : Expiration time of the links in seconds

Type: numerical

requestParameters (Optional) : Map of request parameters and their values to set the
parameters in the response (e.g. ('response-content-disposition’, ‘inline;
filename=myfile.png')). For more information, visit the Amazon documentation:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Type: JSON object

Response Body Parameters

fileUrls : JSON array of requested file URLS.

Type: string[]

Status Codes
200 - Object received
403 - Wrong input formatting

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Developer Guide

26 All Rights Reserved - CyanGate LLC

404 - False ids
422 - Wrong input semantics

• POST

Request Body Parameters

objectId : Id of the parent object this file will be uploaded to

Type: string

multipartUpload : Do multipart Upload, used for big files(currently unavailable)

Type : Boolean

fileType : File Object the new files will be uploaded as.

Type: string

fileProperties : JSON array of file metadata of the uploaded files.

Type: fileProperty[]

policyMap : Key value pairs that represent the additional policy parameters used during
upload

Type: string[]

Response Body Parameters

uploadRequestInfo : JSON object that details how to upload a file to Amazon S3

Type: uploadRequestInfo[]

Status Codes
201 - Object properly created
403 - Wrong input formatting
404 - False objectId
406 - Invalid input
412 - Missing input fields
422 - Wrong input semantics

Usage

Use POST to initiate an upload. Creates File Object records on S-Drive. Follow it by
uploading the files using the data in uplodRequestInfo to Amazon S3 then finish with the
PUT method

• PUT

Request Body Parameters

wipIds : JSON array of Salesforce ids that have completed their uploads to Amazon S3.

Type: string[]

Developer Guide

27 All Rights Reserved - CyanGate LLC

Response Body Parameters

resultObjects : JSON object that details the status of each file’s upload request.

Type: resultObject[]

Status Codes
200 - Upload complete
403 - Wrong input formatting
404 - False wipIds
422 - Wrong input semantics

Usage

Done after the POST method and uploading files to the correct location in Amazon S3.

• DELETE

Request Body Parameters

objectId : Id of the parent object.

Type: string

wipIds : JSON array of of Salesforce ids that will be deleted from S-Drive and Amazon S3.

Type: string[]

Response Body Parameters

resultObjects : JSON object that details the status of each file’s delete request.

Type: ResultObject[]

Status Codes
200 - Object deleted
403 - Wrong input formatting
404 - False objectIds
422 - Wrong input semantics

Usage

Deletes the File from Amazon S3 then removes the file record from Salesforce

 File Objects Resource

Endpoint

https://{instance}. salesforce.com/services/apexrest/cg/SDrive/fileObjects

Developer Guide

28 All Rights Reserved - CyanGate LLC

Methods

GET

Method Details

GET

Request Body Parameters

none

Response Body Parameters

fileObjects : List of Apex API names of SDrive file objects in the org.

Type: string[]

Status Codes
200 – Success

JSON Object Types

JSON Objects and their key value pairs that are used as arrays in our REST request and
response bodys.

policyMap : Map of policy conditions and theirs values that represent the additional
policy parameters used during upload (e.g. ('$Content-Disposition’, ‘attachment;
filename)). For more information, visit the Amazon documentation:

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

FileProperty :
fileName : string

fileLocation : string

description : string

relationshipFieldName : string

fileType : string

fileSizeInBytes : string

UploadRequestInfo :
fileName : string

fileLocation : string

fileSize : string

fileType : string

wipFileId : string

signature : string

http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

Developer Guide

29 All Rights Reserved - CyanGate LLC

policy : string

ResultObject
status : string (success or fail)

errormessage : string (empty if status is success)

wipField : string (to see which file failed)

III. Automatic Folder Creation

If you want to build an automatic folder creation process in S-Drive for any type of object you have

when you insert a new record, please refer to this section. We will use Account and cg__AccountFile__c

object for our example.

1. For the object you have, create an Apex Trigger.
2. If you want this folder creation to take place after you create a new record, the trigger should

work with an “after insert” statement.
3. In the Apex Trigger, paste the following lines:

trigger AccountFoldersTrigger on Account (after insert) {

 List<cg__AccountFile__c> folders = new List<cg__AccountFile__c>();

 for(Account c : Trigger.new{

 cg__AccountFile__c folder = new cg__AccountFile__c();

 folder.cg__WIP__c = false;

 folder.cg__Content_Type__c = 'Folder';

 folder.cg__File_Size_in_Bytes__c = 0;

 folder.cg__File_Name__c = 'Test Folder 1';

 folder.cg__Description__c = 'Some description for folder'; //use

a description field if needed.

 folder.cg__Account__c = c.Id;

 folders.add(folder);

 cg__AccountFile__c folder2 = new cg__AccountFile__c();

 folder2.cg__WIP__c = false;

 folder2.cg__Content_Type__c = 'Folder';

 folder2.cg__File_Size_in_Bytes__c = 0;

 folder2.cg__File_Name__c = 'Test Folder 2'; //use name as

appropriate

 folder2.cg__Description__c = 'Some description for folder'; //use a

description field if needed.

Developer Guide

30 All Rights Reserved - CyanGate LLC

 folder2.cg__Account__c = c.Id;

 folders.add(folder2);

 if(folders.size() > 0){

 insert folders;

 }

}

4. Add up to your requirement the number of folders created.

5. Change the Folder Names by changing the “File Name” section.

For our example, the field is written as “cg__File_Name__c”.

6. You can add descriptions to your folders by changing the “Description” field.

For our example, the field is written as “cg__Description__c”.

7. Make sure your Apex Trigger is active.

8. Test by inserting a new test record and you can use these folders according to your needs.

IV. S-DRIVE SUPPORT

You can contact S-Drive Support team for any questions or problems that you couldn't solve using S-

Drive documents:

1. Open a Ticket at Support Site: sdriveapp.com/support

2. Send an Email: sdrive@sdriveapp.com

You can find up-to-date product information, documents, tutorial videos, tools in our web page:

www.sdriveapp.com

http://sdriveapp.com/support
mailto:sdrive@sdriveapp.com
https://sdriveapp.com/

